Illuminating the Dark Ages, 28.06.16

Exploring reionisation with Lyman-α absorption

Jamie Bolton

With thanks to: **George Becker** (UC Riverside), **Fahad Nasir** (Nottingham)

Anatomy of a z~6 quasar spectrum

Becker, Bolton & Lidz (2015)

Overview

- Observations of the Ly-α forest opacity at z=5-6 (Becker et al. 2015);
- Updated estimates of the ionising emissivity at z~6 (Becker & Bolton in prep.)
- Constraining the thermal history with the Ly-α forest power spectrum at z=5 (Nasir et al. 2016 + poster)

Scatter in Ly- α opacity

- Signature of patchy reionisation? (Wyithe & Loeb 2005)
- Scatter explained by variations in IGM density? (Lidz et al. 2006)

$$\tau \simeq 4.3 \times 10^5 f_{\rm HI} \left(\frac{1+z}{7}\right)^{3/2}$$

Fan et al. (2006)

Scatter in Ly-α opacity

SDSS + 23 additional quasar spectra (MIKE, ESI, HIRES, X-shooter)

ULAS J0148+0600

Other dark GP troughs at z~6

The ULAS J0148+0600 trough is longer and at lower redshift.

Uniform UV background?

Possible additional factor of ~3 variation in f_{HI} required.

Inhomogeneous UV background?

Fluctuating background from galaxies with spatially invariant mean free path.

Inhomogeneous UV background?

- Simple fluctuating UVB models do better, although not perfect.
- Mean free path may also vary spatially; indicative of patchy reionisation?

For possible explanations, see:

Chardin et al. (2015) + talk D'Aloisio et al. (2015) Davies & Furlanetto (2016) + talk Gnedin et al. (2016)

The amplitude of the UVB

Opacity
$$au_{
m Lylpha} \propto rac{1}{\Gamma_{
m HI}(z)}$$
 Hydrogen photo-ionisation rate

The photo-ionisation rate $\Gamma_{\rm HI}$

Decline in photo-ionisation rate by factor of 4-5 over 4<z<6

For discussion see e.g.: Munoz et al. (2016)

Grazian et al. (2016)

Spatial fluctuations in Γ_{HI}

Ionisation rate lower in underdense regions probed by the Ly- α forest

$$\Gamma_{
m HI} \propto \dot{N}_{
m ion} \lambda_{
m mfp}$$

Davies & Furlanetto (2016)

see also Gnedin & Hamilton (2002), Meiksin & White (2003)

lonising emissivity

Ionising emissivity is ~4 photons/atom/Gyr from 2<z<6.

PRELIMINARY

- Emissivity at z~5.5 around 3x larger;
- Thomson optical depth lowered by Planck;
- Consistent with simple models with constant ionising efficiency.

see also e.g.

Robertson et al. (2015) Bouwens et al. (2015) Mitra et al. (2015) Madau & Haardt (2015) Giallongo et al. (2015) Khaire et al. (2016)

+ talks

Photo-ionisation heating

Ejected photo-electrons share their energy with neutrals via scattering and raise the temperature of the residual H-I.

The Ly-α forest as a thermometer

- 1) Thermal broadening by instantaneous temperature (along the line of sight only);
- 2) Jeans smoothing via integrated heating history (in three dimensions).

Gas pressure (Jeans) smoothing

see also e.g. Hui & Gnedin 98, Pawlik+09, Peeples+10, Rorai+13, Kulkarni+15

Gas pressure (Jeans) smoothing

see also e.g. Hui & Gnedin 98, Pawlik+09, Peeples+10, Rorai+13, Kulkarni+15

The observable

Separate the broadening mechanisms with the transmitted flux power spectrum at z~5

see e.g. Croft+02, McDonald+06, Zaroubi+06, Viel+13

Nasir et al. (2016) + poster

MCMC analysis

Nasir et al. (2016) + poster

- Statistical uncertainty of ~20% on u₀ with currently available data.
- Systematics are likely comparable, however.
- Total uncertainty around ~30%

MCMC analysis

Should distinguish between models where u₀ varies by 2-3 eV per proton over 5<z<12

A first look at data

- Data prefer low values of u₀;
- T₀ similar to earlier measurements at z~4-5, e.g. Schaye +00, Becker+11

Figure courtesy of G.D. Becker

Summary

- The Ly-α forest opacity at 5<z<6 exhibits large fluctuations that are most likely related to the latter stages of reionisation;
- Updated emissivity measurements and Planck 2016 data do not require the ionising efficiency of galaxies to evolve at z>6;
- Power spectrum of the Ly- α forest transmitted flux should distinguish between reionisation heating that varies by 2-3 eV per proton over 5<z<12.