
# Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs)

Yoshiki Matsuoka (NAOJ)

on behalf of the SHELLQs collaboration

# **SHELLQs**

## **Subaru High-z Exploration of Low-Luminosity Quasars**





## **Members**

## Y. Matsuoka<sup>1</sup> (PI)

M. Akiyama<sup>2</sup>, N. Asami<sup>3</sup>, S. Foucaud, T. Goto<sup>4</sup>, Y. Harikane<sup>5</sup>, H. Ikeda<sup>1</sup>, M. Imanishi<sup>1</sup>, K. Iwasawa<sup>6</sup>, T. Izumi<sup>5</sup>, N. Kashikawa<sup>1</sup> T. Kawaguchi<sup>7</sup>, S. Kikuta<sup>1</sup>, K. Kohno<sup>5</sup>, C.-H. Lee<sup>1</sup>, R. H. Lupton<sup>9</sup>, T. Minezaki<sup>5</sup>, T. Morokuma<sup>5</sup>, T. Nagao<sup>8</sup>, M. Niida<sup>8</sup>, M. Oguri<sup>5</sup>, Y. Ono<sup>5</sup>, M. Onoue<sup>1</sup>, M. Ouchi<sup>5</sup>, P. Price<sup>9</sup>, H. Sameshima<sup>10</sup>, A. Schulze<sup>5</sup>, T. Shibuya<sup>5</sup>, H. Shirakata<sup>11</sup>, J. D. Silverman<sup>5</sup>, M. A. Strauss<sup>9</sup>, M. Tanaka<sup>1</sup>, J. Tang<sup>12</sup>, Y. Toba<sup>8</sup> <sup>1</sup>NAOJ, <sup>2</sup>Tohoku, <sup>3</sup>JPSE, <sup>4</sup>Tsinghua, <sup>5</sup>Tokyo, <sup>6</sup>Barcelona, <sup>7</sup>Sapporo Medical, <sup>8</sup>Ehime, <sup>9</sup>Princeton, <sup>10</sup>Kyoto Sangyo, <sup>11</sup>Hokkaido,

<sup>12</sup>ASIAA

# High-z quasars - Unique probe of the early Universe

## Fundamental questions we aim to answer:

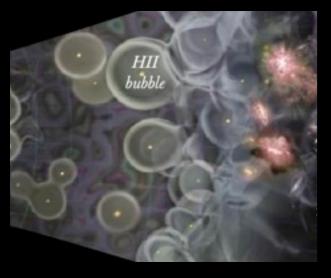


## Why do supermassive black holes (SMBHs) exist?

- **★** When were they born?
- ★ What were their seeds?
- \* How did they grow in the early and late epochs of the cosmic history?

#### [Observational signatures]

- What are the luminosity/mass functions of quasars/SMBHs?
- Are  $10^9$  M<sub>sun</sub>-class SMBHs common or exceptional at z > 6?
- How do the luminosity/mass functions evolve towards lower redshift?




## How did the host galaxies form and (co-)evolve?

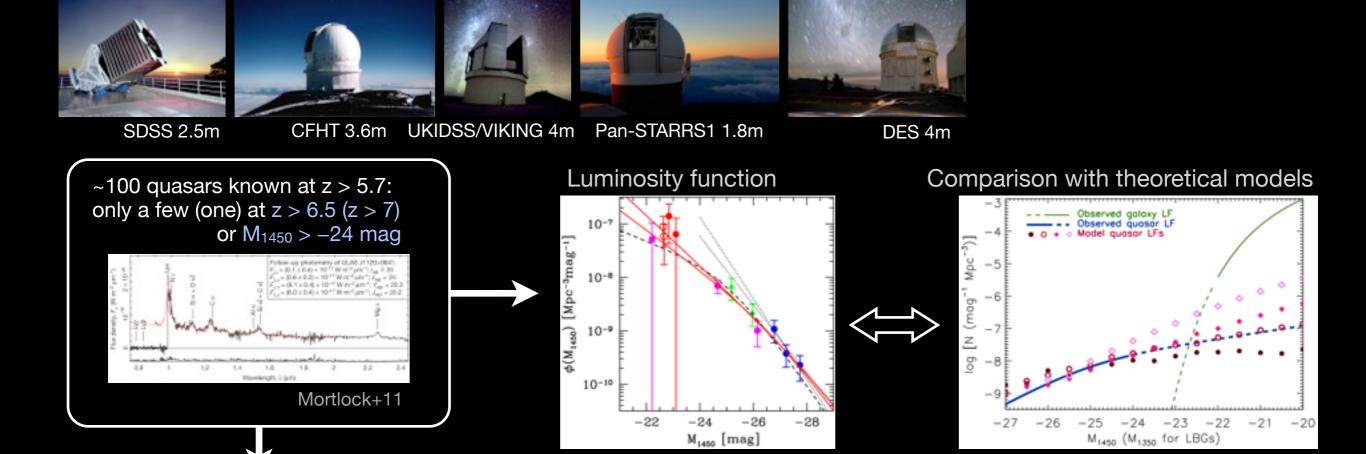
- ★ When and how did the first stellar-mass assembly happen?
- **★** Did SMBHs impact the host galaxy evolution? If so, how?
- **★** Do they mark the highest density peaks of the underlying matter distribution?

#### [Observational signatures]

- What are the current and past star formation activities, inferred from the amount and kinematics of the gas, current SFR, and chemical enrichment?
- Do we find special (e.g., over-dense) environments around the quasars/host galaxies?



## When and how was the Universe re-ionized?


- ★ When did re-ionization start and complete?
- **★** How did it proceed, as a function of space and time?
- \* What provided the ionizing photons?

#### [Observational signatures]

- How does the IGM neutral fraction change along redshift and transverse direction?
- Do low-luminosity quasars emit enough UV photons to re-ionize the Universe?

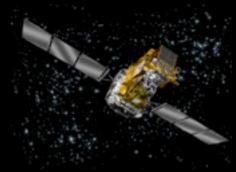
and many more!

# Past/ongoing surveys and their immense legacy value



#### A wide variety of follow-up observations with

- \* ALMA for FIR-based SFR, gas and dust masses, gas kinematics, dynamical galaxy mass, ...
- \* Subaru and other large optical/near-IR telescopes (→ELTs) for SMBH mass, metallicity distribution, IGM properties, ...


Kashikawa+15

- \* HST (→JWST) for the morphology, UV-based SFR, etc. in the host galaxies, surrounding ionized gas, ...
- \* Chandra and XMM-Newton (→ATHENA) for intrinsic mass accretion rate, Eddington ratio, absorbers, ...









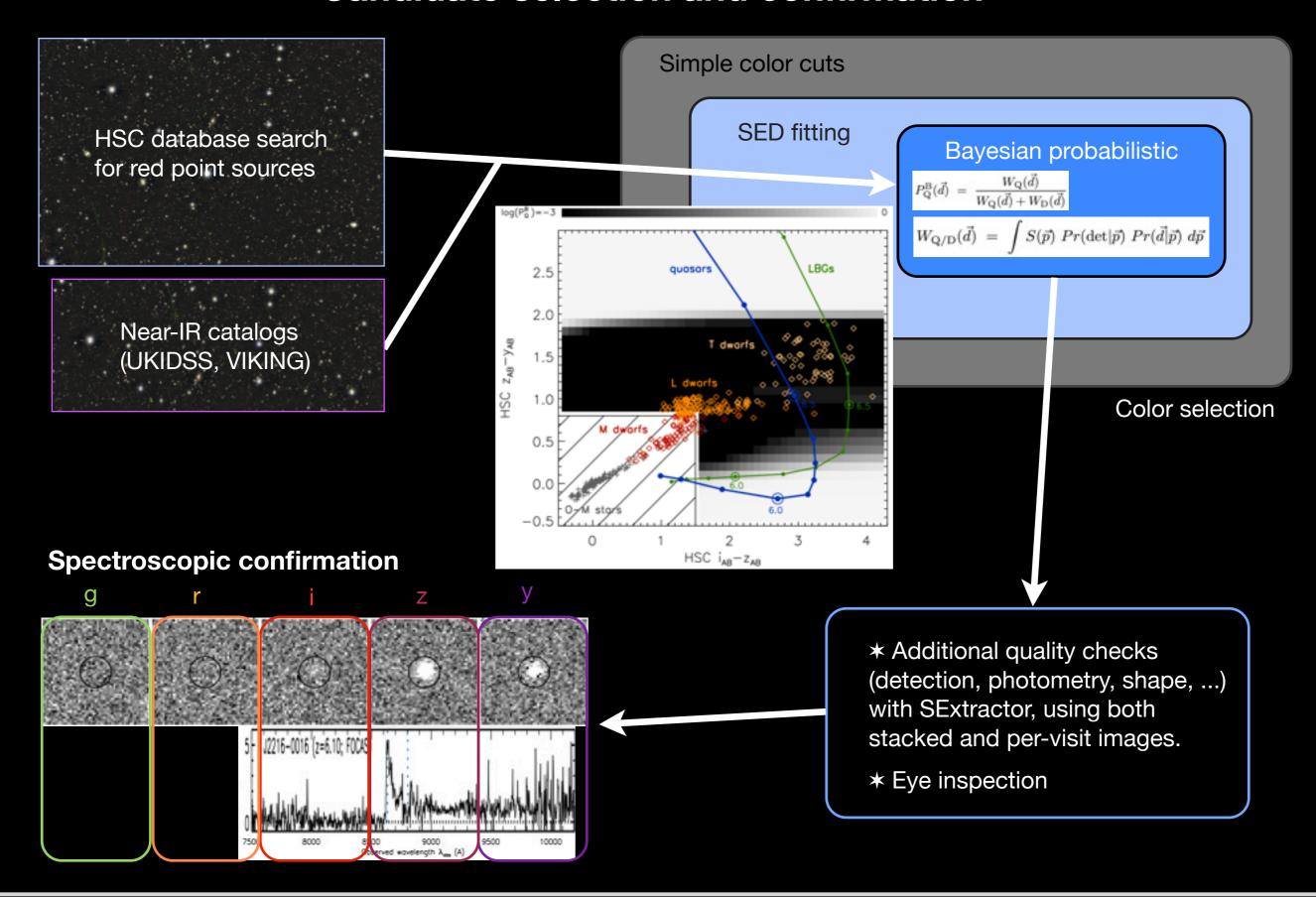
# Subaru Hyper Suprime-Cam SSP survey

## **Hyper Suprime-Cam (HSC)**

- \* 116 2K x 4K Hamamatsu FD CCDs (104 CCDs are used for science exposures)
- \* Circular FoV of 1°.5 diameter
- ★ Installed on the Subaru 8.2-m telescope
- ★ Miyazaki et al. (2016, in prep.)






#### The HSC SSP (Subaru Strategic Program) survey

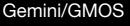
- **★** 300 Subaru nights over 5 years, started in early 2014.
- Wide:  $r_{AB}$  < 26.1 mag over 1400 deg<sup>2</sup>
- Deep:  $r_{AB} < 27.1 \text{ mag over } 27 \text{ deg}^2$
- UDeep:  $r_{AB} < 27.7 \text{ mag over } 3.5 \text{ deg}^2$
- \* Filters: (g, r, i, z, y) in Wide, + NBs in Deep & UDeep
- ★ The Wide has just reached the full-depth, full-color area of 200 deg<sup>2</sup>.



| 192        |                               |          | Table 7: | Quasar San | nples                     |          |          |          |
|------------|-------------------------------|----------|----------|------------|---------------------------|----------|----------|----------|
|            | Wide (1400 deg <sup>2</sup> ) |          |          |            | Deep $(27 \text{ deg}^2)$ |          |          |          |
| redshift   | 3.7-4.6                       | 4.6-5.7  | 5.9-6.4  | 6.6-7.2    | < 1                       | 3.7-4.6  | 4.6-5.7  | 6.6-7.2  |
| mag. range | r < 23.0                      | i < 24.0 | z < 24.0 | y < 23.4   | i < 25.0                  | i < 25.0 | i < 25.0 | y < 25.3 |
| number     | 6000                          | 3500     | 280      | 50         | 2000                      | 200      | 50       | 3        |

## **Candidate selection and confirmation**




# **Progress to date**

- ★ Candidate selection has been completed for the first ~100 deg² of the Wide fields (i.e., all the area included in the latest internal data release).
- \* Spectroscopic observations are underway.

Subaru/FOCAS

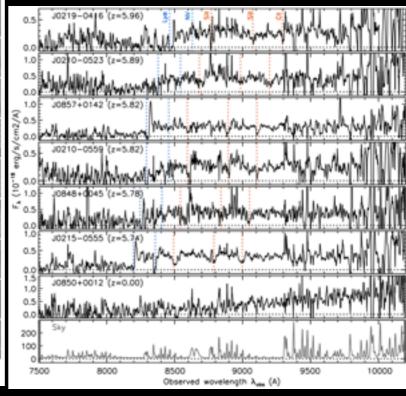


GTC/OSIRIS



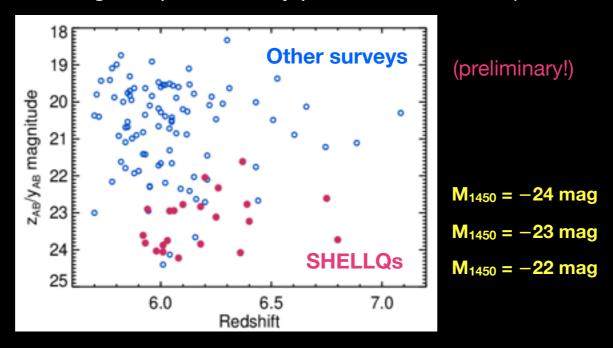

**Quasars** 



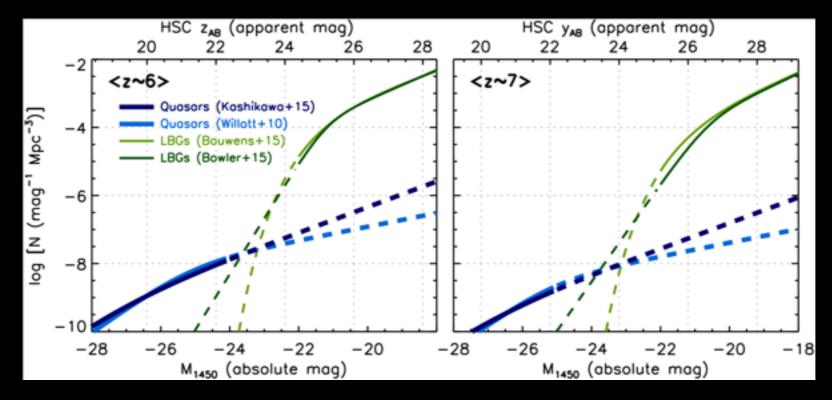

★ Results so far (preliminary!)

| Candidates<br>(z <sub>AB</sub> < 24.5, y <sub>AB</sub> < 24.0) | 86 |
|----------------------------------------------------------------|----|
| Spectroscopy done                                              | 48 |
| Quasars at z ≥ 6                                               | 22 |
| Galaxies at z ~ 6                                              | 14 |
| [O III] emitters at z ~ 0.8                                    | 2  |
| Brown dwarfs                                                   | 4  |
| Moving/transient                                               | 6  |



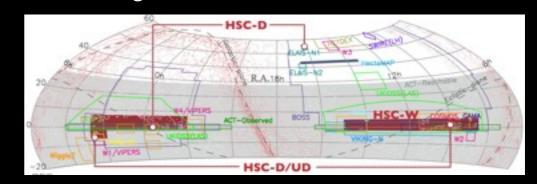

The initial results were published in Matsuoka et al. (2016, ApJ in press; arXiv:1603.02281)

#### Galaxies and a dwarf




# Our uniqueness and challenges

★ We are going down to z<sub>AB</sub> ~ 24.5 mag, deeper than any previous wide-field (1,000-deg<sup>2</sup> scale) survey has reached.




- ★ Spectroscopic identification needs a-few-hour integration per object, even with 8-10 m telescopes.
- \* We are starting to find many  $z \sim 6$  galaxies contaminating to the quasar candidates.



## **Future Prospects**

- \* The HSC-SSP survey will continue to observe the planned 1,400 deg<sup>2</sup> in the Wide component, until 2019-2020. The observed area, in the full color and full depth, has just reached 200 deg<sup>2</sup>.
- \* We will continue high-z quasar candidate selection in lockstep with the HSC survey.
- \* We will also soon start to look at the Deep (27 deg²) and the Ultra-Deep (3.5 deg²) fields.



- \* Spectroscopic observations will continue.
- "Subaru Intensive program" has been approved for our project; 20 nights awarded in the 16B 18A semesters.
- ★ Various follow-up studies are underway.
- luminosity function
- IGM neutral fraction through GP and damping-wing measurements (deep optical spectroscopy proposed)
- SMBH mass and Eddington ratio distributions (near-IR spectroscopy proposed)
- metallicity and chemical evolution (near-IR spectroscopy proposed)
- star formation, dust, and gas in the host galaxies (ALMA observations proposed)
- Lyα halos (HST narrow-band imaging proposed)
- ★ Subaru Prime Focus Spectrograph (PFS) will come on stage at ~2019, and will start a massive spectroscopic survey over the HSC survey area.

